光華講壇——社會(huì)名流與企業(yè)家論壇第6573期
主題:An introduction to high dimensional asymptotics 高維漸近導(dǎo)論(系列講座)
主講人:羅格斯大學(xué) 韓啟陽(yáng)副教授
主持人:西南財(cái)經(jīng)大學(xué)統(tǒng)計(jì)學(xué)院 常晉源教授
時(shí) 間:2024年6月17日(周一)上午9:00-11:30 下午14:30-17:00
2024年6月18日(周二)上午9:00-11:30 下午14:30-17:00
2024年6月19日(周三)上午9:00-11:30 下午14:30-17:00
舉辦地點(diǎn):西南財(cái)經(jīng)大學(xué)光華校區(qū)光華樓10樓1003
主辦單位:數(shù)據(jù)科學(xué)與商業(yè)智能聯(lián)合實(shí)驗(yàn)室 統(tǒng)計(jì)學(xué)院 科研處
主講人簡(jiǎn)介:
Qiyang Han is an Associate Professor of Statistics at Rutgers University. He received a Ph.D. in Statistics in 2018 from University of Washington under the supervision of Professor Jon A. Wellner. His research expands broadly in mathematical statistics and high dimensional probability, with a particular focus on empirical process theory and its applications to nonparametric and high dimensional statistics. He is a recipient of the NSF CAREER award in 2022, the Bernoulli Society New Researcher Award in 2023, and the David G.Kendall's Award in Mathematical Statistics in 2024.
韓啟陽(yáng),羅格斯大學(xué)統(tǒng)計(jì)學(xué)副教授,于 2018 年獲得華盛頓大學(xué)統(tǒng)計(jì)學(xué)博士學(xué)位,師從 Jon A. Wellner 教授。他的研究領(lǐng)域廣泛,包括數(shù)理統(tǒng)計(jì)和高維概率,尤其側(cè)重于經(jīng)驗(yàn)過(guò)程理論及其在非參數(shù)和高維統(tǒng)計(jì)中的應(yīng)用。他于 2022 年獲得美國(guó)國(guó)家科學(xué)基金會(huì) CAREER 獎(jiǎng),2023 年獲得伯努利學(xué)會(huì)新研究員獎(jiǎng),2024 年獲得 David G.Kendall 數(shù)理統(tǒng)計(jì)獎(jiǎng)。
內(nèi)容簡(jiǎn)介:
High dimensional asymptotics has emerged as a new theoretical paradigm to precise characterize the stochastic behavior of a large number of statistical estimators, finding a wide range of applications beyond the reach of standard theoretical methods. In these talks, we will briefly introduce three main theoretical approaches in this field. In the first part, we will discuss the leave-one-out method, originally introduced in the context of robust regression. In the second part, we will introduce a Gaussian process approach, currently known as the Convex Gaussian Min-Max Theorem framework. In the third part, we will discuss an algorithmic approach, known as the Approximate Message Passing method. We will provide both rigorous, theoretical foundations for these approaches, and illustrate the utility of these methods in some of the canonical statistical settings and the more recent interpolating estimators. Time permitting, I will also briefly discuss more recent theoretical developments in this field.
高維漸近理論已經(jīng)成為一種新的理論范式,可精確描述大量統(tǒng)計(jì)估計(jì)量的隨機(jī)行為,其應(yīng)用范圍超出了標(biāo)準(zhǔn)理論方法的范圍。在本系列講座中,我們將簡(jiǎn)要介紹該領(lǐng)域的三種主要理論方法。第一部分,我們將討論留一法,該方法最初是在穩(wěn)健回歸的背景下引入的。第二部分,我們將介紹高斯過(guò)程法,目前稱(chēng)為凸高斯極大極小定理框架。第三部分,我們將討論一種算法,即近似消息傳遞算法。我們將講解這些方法嚴(yán)格的理論基礎(chǔ),并將在一些典型的統(tǒng)計(jì)設(shè)置和較新的插值估計(jì)量中說(shuō)明這些方法的實(shí)用性。如果時(shí)間允許,我還將簡(jiǎn)要討論該領(lǐng)域的更多最新理論進(jìn)展。