威尼斯人娱乐游戏-大发888娱乐登录-尊龙国际娱乐网-网上赌场哪个最安全

Periodic orbits emanating from a kite configuration 四體問(wèn)題中從風(fēng)箏型中心構(gòu)型出發(fā)的周期解

來(lái)源:     時(shí)間:2024-04-17     閱讀:

  • 分享

光華講壇——社會(huì)名流與企業(yè)家論壇第6494期

主題:Periodic orbits emanating from a kite configuration 四體問(wèn)題中從風(fēng)箏型中心構(gòu)型出發(fā)的周期解

主講人:墨西哥自治理工大學(xué)(墨西哥) Ernesto Pérez-Chavela教授

主持人:數(shù)學(xué)學(xué)院 祝書(shū)強(qiáng)講師

時(shí)間:4月22日 14:00

舉辦地點(diǎn):通博樓B412

主辦單位:數(shù)學(xué)學(xué)院 國(guó)際交流與合作處 科研處

主講人簡(jiǎn)介

Ernesto Pérez-Chavela 教授是墨西哥科學(xué)院院士、墨西哥自治理工大學(xué)(ITAM) 教授和加拿大維多利亞大學(xué)兼職教授。他是國(guó)際著名天體力學(xué)專(zhuān)家。他上世紀(jì)九十年代初在墨西哥獲博士學(xué)位后跟隨著名數(shù)學(xué)家、美國(guó)國(guó)家科學(xué)院院士 D. Saari 做博士后,之后回到墨西哥任教。他在 N 體問(wèn)題的 Saari 猜測(cè)、中心構(gòu)型、帶有曲率的多體問(wèn)題以及中心構(gòu)型及其穩(wěn)定性等方面做出了杰出貢獻(xiàn)。MathSciNet 統(tǒng)計(jì),他已發(fā)表論著近 100篇/冊(cè),已被國(guó)際同行廣泛引用,其多篇論文發(fā)裝在 《Arch. for Rati. Mech. Anal.》、《Trans. Amer. Math. Soc.》、《Celestial Mech. & Dynam. Astronomy》等國(guó)際著名刊物上。近年來(lái),他還一直投身于科普工作,并就這一主題發(fā)表了若干篇論文。

Professor Ernesto Pérez-Chavela is a member of the Mexican Academy of Sciences, a professor at the Instituto Tecnológico Autónomo de México (ITAM), and an adjunct professor at the University of Victoria in Canada. He is an internationally renowned expert in celestial mechanics. After receiving his PhD in Mexico in the early 1990s, he worked as a postdoctoral fellow with D. Saari, a famous mathematician and member of the National Academy of Sciences,United States. He has made outstanding contributions to Saari conjectures, central configurations, N-body problems in constant curvature spaces, and the stability of central configurations.

內(nèi)容簡(jiǎn)介

在本次演講中,我將展示在具有三個(gè)相等質(zhì)量的平面四體問(wèn)題中以風(fēng)箏構(gòu)型形式發(fā)出的周期和準(zhǔn)周期軌道族的存在性。我們引入了一個(gè)新的坐標(biāo)系,它測(cè)量(在平面四體問(wèn)題中)任意配置與風(fēng)箏構(gòu)型的距離。利用這些坐標(biāo)和李雅普諾夫中心定理,我們得到了來(lái)自風(fēng)箏構(gòu)型的周期和準(zhǔn)周期軌道族。

In this talk I will show the existence of families of periodic and quasiperiodic orbits emanating from a kite configuration in the planar four body problem with three equal masses. We introduce a new coordinate system which measures (in the planar four body problem) how far is an arbitrary configuration from a kite configuration. Using these coordinates, and the Lyapunov center theorem, we get families of periodic and quasiperiodic orbits emanating from a kite configuration.

主講人 時(shí)間
地點(diǎn) 主辦單位