光華講壇——社會(huì)名流與企業(yè)家論壇第6679期
主題:Bayesian regression approach for polygenic risk prediction多基因風(fēng)險(xiǎn)預(yù)測(cè)的貝葉斯回歸方法
主講人:清華大學(xué) 侯琳副教授
主持人:統(tǒng)計(jì)學(xué)院 劉耀午教授
時(shí)間:11月24日 16:00-17:00
舉辦地點(diǎn):柳林校區(qū)弘遠(yuǎn)樓408會(huì)議室
主辦單位:統(tǒng)計(jì)研究中心和統(tǒng)計(jì)學(xué)院 科研處
主講人簡(jiǎn)介:
侯琳,清華大學(xué)統(tǒng)計(jì)學(xué)研究中心長(zhǎng)聘副教授、博士生導(dǎo)師,主要從事生物統(tǒng)計(jì)、生物信息、統(tǒng)計(jì)遺傳學(xué)等方向的研究。侯琳博士于2011年獲得北京大學(xué)統(tǒng)計(jì)學(xué)博士學(xué)位,2012年至2015年在耶魯大學(xué)生物統(tǒng)計(jì)系從事研究工作,歷任博士后、副研究員,2015年起加入清華大學(xué)統(tǒng)計(jì)學(xué)研究中心。擔(dān)任中國(guó)現(xiàn)場(chǎng)統(tǒng)計(jì)研究會(huì)計(jì)算統(tǒng)計(jì)分會(huì)常務(wù)理事、秘書(shū)長(zhǎng);Statistics in Biosciences編委,Quantitative Biology編委。
內(nèi)容簡(jiǎn)介:
Genome wide association analysis (GWAS) has provided numerous insights into the genetic etiology of complex diseases. Built on GWAS data, polygenic risk scores have been widely exploited for risk prediction of complex traits. In this talk, I will first introduce NeuPred, a recent Bayesian polygenic risk score we developed. NeuPred allows for a wide class of prior choices for shrinkage estimation, thus accommodates varying genetic architectures and improves overall prediction accuracy for complex diseases. Then I will introduce the problem of cross-ancestry risk prediction and introduce a statistical framework named X-Wing to improve predictive performance in ancestrally diverse populations. X-Wing quantifies local genetic correlations for complex traits between populations, employs an annotation dependent estimation procedure to amplify correlated genetic effects between populations, and combines multiple population-specific PRS into a unified score with GWAS summary statistics alone as input. Through extensive benchmarking, we demonstrate that X-Wing pinpoints portable genetic effects and substantially improves PRS performance in non-European populations.
基因組全關(guān)聯(lián)分析(GWAS)為復(fù)雜疾病的遺傳病因?qū)W提供了許多見(jiàn)解?;贕WAS數(shù)據(jù),多基因風(fēng)險(xiǎn)評(píng)分已被廣泛用于復(fù)雜性狀的風(fēng)險(xiǎn)預(yù)測(cè)。在這次演講中,主講人將首先介紹NeuPred,最近開(kāi)發(fā)的貝葉斯多基因風(fēng)險(xiǎn)評(píng)分。NeuPred為收縮估計(jì)提供了廣泛的先驗(yàn)選擇,從而適應(yīng)了不同的遺傳結(jié)構(gòu),并提高了復(fù)雜疾病的整體預(yù)測(cè)精度。然后,主講人將介紹跨種族風(fēng)險(xiǎn)預(yù)測(cè)的問(wèn)題,并引入一個(gè)名為X-Wing的統(tǒng)計(jì)框架,以提高對(duì)種族多樣性人群的預(yù)測(cè)性能。X-Wing量化群體間復(fù)雜性狀的局部遺傳相關(guān)性,采用注釋依賴(lài)估計(jì)流程放大群體間的相關(guān)遺傳效應(yīng),并將多個(gè)群體特異性PRS組合成一個(gè)統(tǒng)一的評(píng)分,僅以GWAS概括統(tǒng)計(jì)量作為輸入。通過(guò)廣泛的基準(zhǔn)測(cè)試,主講人證明X-Wing精確定位了可移植的遺傳效應(yīng),并大大提高了非歐洲人群的PRS性能。